

LA-UR-19-21086

Approved for public release; distribution is unlimited.

Title: LANL Accelerator Activities for C-band

Author(s): Krawczyk, Frank L.

Intended for: Seminar during a visit to SLAC

Issued: 2019-02-11

LANL Accelerator Activities for C-band

Frank Krawczyk

AOT - Accelerators and Electrodynamics LANL

February 2019

Abstract

 LANL has a range of accelerator activities that would benefit from improvements in RF resonator performance. XFEL (presently using a SRF baseline similar to LCLS-II) would benefit from much higher gradient and long-pulse operation of copper structures. Higher gradient RF structures for lower energy accelerators (~100 MeV) would also provide a path to transportable systems, such as ICS sources. Lastly, the utilization of dielectrics could be exploited for increased efficiency and compactness, e.g. for accelerator in space efforts. A LANL R&D effort aims at systematic improvement of copper structures employing material science simulations to explain and improve breakdown effects, combined with highly optimized designs, integration of cryo-cooling and the use of dielectric insertions. The work is integrated into a High-Gradient collaboration between SLAC, UCLA and LANL.

LANL Accelerator Activities for C-band

2/14/2019

SLAC Accelerator Seminar

- LANL Accelerator Projects
 - Overview
- Technology limitations
 - Gradient, pulse length, burst mode
- Start-up R&D effort
 - Choice of Frequency
 - Material Science tools
 - Dielectric insertions
- Full Technology R&D effort
- Summary and Outlook

LANL Accelerator Efforts – An Overview

New accelerator projects starting at LANL since 2018

- SCORPIUS, a multi-pulse induction linac for hydrodynamic experiments
- DMMSC (Dynamic Mesoscale Materials Science Capability) with a trajectory leading to a MaRIE type XFEL
- Accelerator in Space (AIS) in support of the NASA CONNEX mission.
 The goal is to study magnetospheric processes and their role for different types of auroral and ionospheric activities
- Compact accelerators for national defense missions, e.g transportable accelerator driven ICS sources
- Build-up of an Accelerator Development and Engineering Facility (ADEF), a local electron beam based test facility for technology development
- Neutral Particle Beam technology development for the DoD

Technology limitations (selective list)

- Size, cost and operation needs of facility size systems like MaRIE
 - The location at LANSCE imposes a length limit on the linac
 - SRF option (LCLS-II like) has no energy upgrade path
 - SRF option enables long-pulse operation, but low frequency limits pulse formats
 - High frequency normal conducting RF (NCRF) has potential for much higher gradient, but is limited in pulse length and has high RF-losses
- Size, weight and power efficiency (SWaP) of space application accelerator
 - SRF systems are large and have complex sub-systems
 - High-frequency resonators are small, but NCRF is still heavy and has high RF-losses
- Size of compact, transportable accelerator systems
 - Transport requirement (container size) limits accelerator length

Start-up R&D effort

- FY19 Feasibility Study with the following thrust areas
 - Address breakdown limitations to achieve ultra high gradients (UHG) in copper structures (development and verification of tools)

Material Simulation Effort

- Incidence of breakdown is very well characterized (SLAC, CERN, KEK, INFN-LNF, etc.)
- Microscopic causes are complex:
 - –occurs at fields that are well below what needed of a clean flat Cu surface (~10 GV/m)
 - -requires the formation of precursors that locally enhance the field
 - –How does precursor formation couple with the microstructure and composition?

Modeling Goals

- Short-term goals:
 - Demonstrate that the response of metals to external E fields can be captured by a classical approach calibrated by quantum calculations
 - Demonstrate a long-time and a large-scale atomistic simulations capability for metals under strong E fields
- Long(er)-term goals:
 - –Include combined H,E effects
 - Understand how the breakdown propensity of these defects couple to the microstructure and composition of the material
 - Inform the design of optimized material solutions

Quantum Approach – Density Function Theory (DFT)

- Quantum description:
 - Explicit description of the electron gas
 - Variational approach: find the electronic density that minimizes quantum Hamiltonian
- Strengths:
 - Very accurate (~100 meV/atom)
 - First principles (few parameters, transferable)
- Weakness:
 - Very expensive (scales as N_{electrons}³)
 - Small systems (~few 100 atoms): cannot capture microstructure effects
 - Static or short dynamic simulations (~ps): cannot explicitly simulate surface evolution

Example from VASP

- Determines equilibrium charge distribution
- Change in work-function to release charges

Why are we doing this?

Fit classical model on DFT data – is well established process for copper

Classical Approach – Molecular Dynamics (MD)

- Classical description:
 - Molecular dynamics (integration of classical EOM)
 - Charge-equilibration formalism (qEq) to capture effect of induced charges
- Strengths:
 - -Reasonably accurate empirical description of Cu
 - Relatively fast
 - "Large" systems (~10⁶ atoms): can capture some microstructural effects
 - "Long" simulations (milliseconds): can capture surface evolution
- Weakness:
 - Scales are still very limited compared to engineering scales

LAMPPS modeling of charge equilibrated surface

MD under (very) strong field

- ~100,000 atoms
- polycrystalline sample
- 20x20 nm slab
- T=800K
- E=~10 GV/m (close to critical DC field)

MD under (very) strong field

- Nano-pyramids spontaneously form, leading to local field enhancement and evaporation/field emission
- Suggests that breakdown can be simulated in very high-field configurations
- Can this mechanism create breakdown precursors?

Future MD work: nature of the precursors

- Clear indications that magnetic fields are crucial
- Pulse heating is known to be a factor
- Will explore microstructural changes induced by thermal fatigue and their coupling with E and with the microstructure
- We have extended LAMPPS for consideration of harmonic E and H external forces

State of the Material Simulation Work

- Classical models parameterized from quantum calculations can describe the energetics of metals under high fields
- In critical conditions, we see the spontaneous formation of nanopyramids and the emission of atoms (i.e., "breakdown")
- Still have to simulate the growth of the precursors
- Atomistic simulations face a serious challenge of scales, but can provide unique insights

Start-up R&D effort

LANL pursues as small set of technology developments to address this range of performance issues

- FY19 Feasibility Study with the following thrust areas
 - Address breakdown limitations to achieve ultra high gradients (UHG) in copper structures (development and verification of tools)
 - Identify best operation frequency for LANL-XFEL type applications

LANL-XFEL needs (Expect the answer to be C-band)

Space limitations

12 GeV @ 31.5 MV/m

→ linac length ~750m

L-band C-band

12 GeV @ 100 MV/m

→ linac length ~170m

Burst mode

S-band: slow, bunch spacing too close

X-band: beam quality limited by wakes

C-band: considered overall good mix

Quantitative Comparison of L-, S-, C- and X-band

• RF properties (identical geometry, scaled S \rightarrow C \rightarrow X, a/ λ 0.05 radius)

	unit	S	С	Х
Frequency	GHz	2.856	5.712	11.424
Q0 (@ RT)		1.90E+4	1.34E+4	9.48E+3
R/Q	Ohm	235.86	235.86	235.86
Ep/E0T		2.9762	2.9762	2.9762
Hp/E0T	mA/MV	2.736	2.736	2.736
R Shunt	MOhm/m	85.162	120.437	170.323

Table 1: Critical performance among frequencies

(bold is better)	L-band	S-band	C-band	X-band
R Shunt [MΩ/m]	9e6	85	120	170
k loss long. [V/pC]	10.2	26.4	36.4	50.4
k _{loss} trans.	15.1	155	835	4420
Gradient [MV/m]	30	50	100	150
Bunch sep. in burst	3 cyc.	6 сус.	13 cyc.	26 cyc.

Short-range Wakes

Longitudinal and transverse wakes with ECHO

Start-up R&D effort

LANL pursues as small set of technology developments to address this range of performance issues

- FY19 Feasibility Study with the following thrust areas
 - Address breakdown limitations to achieve ultra high gradients (UHG) in copper structures (development and verification of tools)
 - Identify best operation frequency for XFEL type applications
 - Integrate NCRF-design concepts with cryogenic operation

Start-up R&D effort

LANL pursues as small set of technology developments to address this range of performance issues

- FY19 Feasibility Study with the following thrust areas
 - Address breakdown limitations to achieve ultra high gradients (UHG) in copper structures (development and verification of tools)
 - Identify best operation frequency for XFEL type applications
 - Integrate NCRF-design concepts with cryogenic operation
- Prior R&D efforts
 - Exploit integration of dielectrics for increased SWaP of accelerator in Space (AIS) systems

Performance improvements by introduction of dielectrics

- Configuration that reduces potential charge-up
- Design leads to improved efficiency and reduced size

Epsilon	R _{cav}	Ceramic Width	Ceramic R frac	P cav
	[cm]	[cm]	[cm]	[W]
1	4.64	N/A	N/A	134
3	4.00	0.65	0.59	89.5
5	3.80	0.544	0.56	78
6	3.78	0.494	0.56	76
8	3.65	0.426	0.56	72
10	3.62	0.360	0.54	70
15	3.56	0.312	0.56	66
20	3.59	0.268	0.52	64
20	(addit'l ge	60		

Theoretical study of dielectrics for new options or custom design

Dielectric constant versus bandgap (computed within DFT) plot for a set of polycrystalline ceramic materials previously reported in literature. Yellow circles identify materials that have been proposed as promising dielectrics for the hybrid cryogenic copper/ceramic accelerator. The arrow at the alumina dot shows the doping Euclidlabs did for our test dielectric.

Dielectric constant versus experimental bandgap plot for all binary octet AB-type compounds. Yellow circles identify materials that have been proposed as promising dielectrics for the hybrid cryogenic accelerator and other compounds with comparable performance are highlighted.

- High dielectric constant and large bandgap (low losses) are desirable
- Most materials have one or the other
- Can new materials be designs (like Ti-doped alumina)?
- Do compromise materials have good vacuum and/or breakdown properties?

Start-up R&D effort

LANL pursues as small set of technology developments to address this range of performance issues

- FY19 Feasibility Study with the following thrust areas
 - Address breakdown limitations to achieve ultra high gradients (UHG) in copper structures (development and verification of tools)
 - Identify best operation frequency for XFEL type applications
 - Integrate NCRF-design concepts with cryogenic operation
- Prior R&D efforts
 - Exploit integration of dielectrics for increased SWaP of accelerator in Space (AIS) systems
- Building a ollaboration with other US efforts for full accelerator system
 - TOPGUN photo-injector development at UCLA (Rosenzweig)
 - RF-structure and coupler technology at SLAC (Tantawi)
 - RF-power systems for operation of UHG structures at SLAC (Kemp)

Full Technology R&D efforts

Proposal for a full 3-year effort related to high gradient operation

- Develop theoretical understanding of breakdown and its precursors
- Develop recipe for best materials to build UHG RF-structure
- Design resonator and coupler configuration for UHG RF-structure
- Develop metallurgic and fabrication concepts to build these
- Integrate design and fabrication with best cryogenic configuration
- Perform sample testing experiments
- Build and RF-test UHG prototypes
- Build extendable test stand with source, high-power klystron and RFstructure to beam-test of UHG structure

Material Science

RF Engineering

Advanced manufacturing

Full Technology R&D efforts

Proposal for a full 3-year effort related to high gradient operation

- Develop theoretical understanding of breakdown and its precursors
- Develop recipe for best materials to build UHG RF-structure
- Design resonator and coupler configuration for UHG RF-structure
- Develop metallurgic and fabrication concepts to build these
- Integrate design and fabrication with best cryogenic configuration
- Perform sample testing experiments
- Build and RF-test UHG prototypes
- Build extendable test stand with source, high-power klystron and RFstructure to beam-test of UHG structure

Proposal for a full 3-year effort related to the use of dielectrics

- Continue study of suitable dielectrics (low loss, suitable for high fields)
- Design, build and test RF-structures with integrated dielectrics

Summary and Outlook

- LANL is in the process of starting a up to 4 year program for an integrated UHG resonator development that includes
 - material simulations to understand and improve breakdown behavior
 - C-band has been identified as the most suitable frequency for LANL needs
 - Establish standing-wave RF-structure designs for long-pulse operation
 - Use LANL advanced manufacturing capabilities for "gentle" manufacturing
 - Start up a electron beam testing capability (ADEF). Beamline is expected to be extended by other programmatic needs. Test bed for diagnostics, RFstructure, and cathode development, including small FEL experiments.
 - Establish dielectric for performance improvement at moderate gradients
- The developed technologies are expected to
 - Establish custom material designs for high performance RF resonators
 - Provide the foundation for an improved LANL-XFEL design
 - Provide technologies for compact FEL designs
 - Establish a path to transportable SNM detection devices using ICS gammas

Acknowledgements

Contributions from:

- Evgenya Simakov, John Lewellen, Mark Kirshner, Ari Le, Tim Germann, Danny Perez, Gaoxue Wang, Ghanshyam Pilania, Andrew Garmon, Samantha Lawrence, Amber Black, and Todd Jankowski at LANL
- Sami Tantawi and Emilio Nanni at SLAC
- Jamie Rosenzweig and Atsushi Fukasawa at UCLA

THE END

High Gradient Collaboration

- FY19 Work
 - LANL effort to secure the 3-year funding for both C-band and dielectric work
 - Establish MOU between SLAC, UCLA and LANL on collaboration
 - Dielectric characterization of Ti-doped alumina at SLAC
 - Detailed quantification of S- vs. C- vs X-band performance of RF-resonators
 - Cost comparison for full 12 GeV linac
 - Design of S-band tank with distributed coupling w/ optimization of shortrange wakes
 - Fabrication of prototype with testing at UCLA by the end of the year
 - Participate in cFEL activities led by UCLA & SLAC
 - Share material simulation results
 - Share design of S-band proof-of-principle resonator (scaled from wake-optimized C-band design)
 - Share expertise on eSASE concepts

High Gradient Collaboration

- FY20-22 Work (SLAC and UCLA will partner with LANL)
 - Establish better copper or copper alloy for breakdown suppression, or at a minimum provide molecular dynamics based explanation for the experimental findings
 - Design and build a prototype C-band structure at LANL
 - Aquire a C-band, high peak-power klystron
 - Set up a simple beamline for a beam-tests at C-band (ADEF)
 - Contribute to trade-off study on ILC type accelerator with SLAC
 - Share C-band optimization results
 - Trade-off between fewer high-power tubes and many lower power tubes